If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-130=0
a = 2; b = 24; c = -130;
Δ = b2-4ac
Δ = 242-4·2·(-130)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{101}}{2*2}=\frac{-24-4\sqrt{101}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{101}}{2*2}=\frac{-24+4\sqrt{101}}{4} $
| 13+20=x−813+20=x-8, | | x+x+50+30=180 | | 8/x+2+8/2=5 | | 8=5(w+4)-8w | | 8b-21=-b+6 | | 1x-(-12)=-7 | | 1x-(-8)=3 | | 5=2^x/2.9 | | 1h-(-8)=3 | | 2(x-4)+1/3=3(x+5)/2 | | d-3/4=-8 | | 3x-4x+16=7 | | 1x-9=-20 | | K^3+6k+3=0 | | 6+5-3x=1-3x | | n/5-9=-19 | | 1w-3=24 | | 18x+4+58=180 | | X-3/4=2x+3/5 | | 1x-15=-8 | | x+12x-56=76 | | y+3(3)=5 | | 6x-10+5x+2=180 | | y+3(0)=5 | | X^3-3x^-4x+12=0 | | y+3(-1)=5 | | 5-2x=14-5x | | x-5/2x-4=1 | | 17x-1=16x+5 | | 30x+60=45x | | -8(8+5(-2+8n)=-76 | | 17x-1+16x+5=180 |